Abstract

The nonlinear interaction of the two lowest Trivelpiece–Gould modes in a non-neutral plasma has been observed. Because of coupling in the nonlinear terms of the continuity and momentum equations, the two modes can exchange energy and convert one to the other. This can be modeled using the cold fluid equations and the averaging method. Experimentally, this process always stops with the lower frequency mode dominating the final state. Numerical integration of the model suggests that this occurs because the higher frequency mode is more strongly damped than the lower frequency mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.