Abstract

Molecular isomerization fundamentally involves quantum states bound within a potential energy function with multiple minima. For isolated gas-phase molecules, eigenstates well above the isomerization saddle points have been characterized. However, to observe the quantum nature of isomerization, systems in which transitions between the eigenstates occur-such as condensed-phase systems-must be studied. Efforts to resolve quantum states with spectroscopic tools are typically unsuccessful for such systems. An exception is CO adsorbed on NaCl(100), which is bound with the well-known OC-Na+ structure. We observe an unexpected upside-down isomer (CO-Na+) produced by infrared laser excitation and obtain well-resolved infrared fluorescence spectra from highly energetic vibrational states of both orientational isomers. This distinctive condensed-phase system is ideally suited to spectroscopic investigations of the quantum nature of isomerization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call