Abstract
Nanostrcutured particles and polycrystalline thin films of Sn-doped chalcopyrite are synthesized by newly-developed methods. Surprisingly, Sn doping introduces a narrow partially filled intermediate band (IB) located ~1.7 eV (CuGaS2) and ~0.8 eV (CuInS2) above the valance band maximum in the forbidden band gap. Diffuse reflection spectra and photoluminescence spectra reveal extra absorption and emission spectra induced by the IBs, which are further supported by first-principle calculations. Wide spectrum solar response greatly enhances photocatalysis, photovoltaics, and photo-induced hydrogen production due to the intermediate band.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.