Abstract

The nonfullerene electron acceptors (NFAs) for organic solar cells are attracting intense research efforts due to their impressive performance. Understanding the temporal evolution of the excited states in NFAs is essential to gain insights into the working mechanism of these state-of-the-art devices. Here we characterized the photoconductivities of a neat Y6 film and a Y6:PM6 blend film using time-resolved terahertz spectroscopy. Three different types of excited states were identified based on their distinct terahertz responses, i.e., plasma-like carriers, weakly bound excitons, and spatially separated carriers. Under high-intensity excitation, the many-body interaction of excitons in the Y6 film leads to the plasma-like state, giving rise to a terahertz response characteristic for a dispersive charge transport. This transient state decays quickly into exciton gas due to fast Auger annihilation. Under low-intensity excitation, only isolated excitons are created and the plasma state is absent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call