Abstract

Evidence of a superfluid liquid phase present in polycrystalline helium at a temperature of 0.2 K and a pressure of 51 bar has been obtained by means of inelastic neutron scattering. The superfluid component is absent at a temperature of 0.6 K and the same pressure. Thus, a “solid helium-superfluid helium” phase transition has been discovered. The sample of solid helium in a porous medium (silica aerogel) has been prepared with the use of a capillary blocking technique. The shape of the structure factor of the superfluid phase indicates the presence of clusters or the effects of a restricted geometry. The results may be used to explain the nonclassical rotational inertia phenomenon in solid helium (often referred to as supersolidity, Nature, 2004).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.