Abstract
Ultracold plasmas (UCPs) provide a well-controlled system for studying multiple aspects in plasma physics that include collisions and strong-coupling effects. By applying a short electric field pulse to an UCP, a plasma electron center-of-mass oscillation can be initiated. For accessible parameter ranges, the damping rate of this oscillation is determined by the electron-ion collision rate. We performed measurements of the oscillation damping rate with such parameters and compared the measured rates to both a molecular dynamics (MD) simulation that includes strong-coupling effects and a Monte Carlo binary collision simulation designed to predict the damping rate including only weak-coupling considerations. We found agreement between the experimentally measured damping rate and the MD result. This agreement did require including the influence of a previously unreported UCP heating mechanism whereby the presence of a dc electric field during ionization increased the electron temperature, but estimations and simulations indicate that such a heating mechanism should be present for our parameters. The measured damping rate at our coldest electron temperature conditions was much faster than the weak-coupling prediction obtained from the Monte Carlo binary collision simulation, which indicates the presence of a significant strong-coupling influence. The density averaged electron strong-coupling parameter Γ measured at our coldest electron temperature conditions was 0.35(8).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.