Abstract

Several spacecraft experimenters have reported on the detection of large temporal variations in trapped electron fluxes near L = 5 to 6 at midlatitudes in the night hemisphere. In this report we describe in detail the particle, wave, and field changes measured when Ogo 5 traversed an outer-zone trapping boundary of this type on September 7, 1968. It is shown that thermal proton concentrations and E greater than 50-keV electron fluxes abruptly decreased when electrons with (1-4) keV mean energy were detected. It is also shown that currents flowed along the average geomagnetic field direction near the plasma boundaries and that these were accompanied by intense VLF electrostatic waves. It is proposed that turbulent resistivity produced by current-driven plasma instabilities allows parallel dc electric fields to develop along this boundary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.