Abstract
Halide perovskites (HPs) are fascinating materials whose optoelectronic properties are arguably excitonic. In the HP family, biexcitons are known to exist only in low dimensions where exciton-exciton binding is strongly enhanced by quantum and dielectric confinements. In this paper, however, it is shown that they indeed do exist in 3D bulk CH3 NH3 PbBr3 (MAPbBr3 ) single crystals if the pristine crystal quality is ensured for subtle binding of two excitons. The existence of biexcitons is clearly evidenced below 30 K with a binding energy of ≈3.9 ± 0.3 meV according to i) exciton-biexciton population dynamics, ii) giant resonant two-photon excitation of biexcitons, iii) inverted Boltzmann-type spectral feature, and iv) zero degree of circular polarization in the biexciton photoluminescence. Because of the polariton effect, the two-photon resonance occurs at the excited biexciton state from which longitudinal-transverse splitting is calculated to be 3.7 meV. The discovery of the 3D biexcitons underscores the very quality of HP crystals for generating various many-body excitonic phases in MAPbBr3 and its analogues toward the improved understanding of their fundamental properties and highly efficient optoelectronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.