Abstract

This paper provides a confirmation of the effectiveness of the recently suggested ab initio approach to the theoretical prediction of phase transformations which may be induced in metallic alloys by metal plasma immersion and ion implantation processing. The approach is based on an assumption that at certain concentrations of the implanted species, the relaxation of the exited electronic state of the implanted structure should be accompanied by the rearrangement of atoms leading to the formation of a new phase. Recently, on the basis of density functional theory calculations of the energetic characteristics of the electronic subsystems of the implanted Mg–Ag system, it was predicted that concentrations of the implanted Ag ions within the range from ∼18 to 23 at% Ag, favor transition to the phase ε′-Ag17Mg54. Our transmission electron microscopy observations and electron diffraction analysis of the Mg-based alloy subjected to the implantation of Ag ions at dose of ∼5×1015 ion/cm2 confirmed that the formation of the ε′-Ag17Mg54 phase indeed takes place.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call