Abstract

Accurate inundation forecasting provides vital information about the behaviour of fluvial flood water. Using data assimilation with an Ensemble Transform Kalman Filter we combine forecasts from a numerical hydrodynamic model with synthetic observations of water levels. We show that reinitialising the model with corrected water levels can cause an initialisation shock and demonstrate a simple novel solution. In agreement with others, we find that although assimilation can accurately correct water levels at observation times, the corrected forecast quickly relaxes to the open loop forecast. Our new work shows that the time taken for the forecast to relax to the open loop case depends on domain length; observation impact is longer-lived in a longer domain. We demonstrate that jointly correcting the channel friction parameter as well as water levels greatly improves the forecast. We also show that updating the value of the channel friction parameter can compensate for bias in inflow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.