Abstract

The present paper addressed the issue of growth of planetary boundary-layer fluxes on the time scale of MJO based on ECMWF reanalysis daily data of 180 days covering April–September, 2001. Diagnostic analysis of this data set utilises computations of moisture and sensible heat fluxes in the frequency domain which involve nonlinear interactions phenomena of MJO time scale with the synoptic scales. Basically the whole computations performed are based on surface similarity theory and Richardson number dependent K-theory in the surface and planetary boundary layer (PBL), respectively, both invoke triple product nonlinearilies. Present observational study shows that among the totality of the triads participating in phase-locking phenomena, a prominent band of those reside in the MJO time scales (30 to 60 days) and the synoptic time scales (3 to 7 days). The study suggests that the low frequency variability on MJO time scale in moisture and sensible heat flux arises from its nonlinear interactions with synoptic time scales. The results show that the phases of the three interacting oscillations associated with specific humidity/SST, Richardson number dependent instability factor and wind shear are positive and reasonably close to each other. The amplitudes of the synoptic scale oscillations are not insignificant compared to that of MJO. These dynamical aspects regarding the phases and amplitudes of the three participating oscillations favour the nonlinear interactions of MJO to the synoptic scales and thus lead to rapid exchange of energy transfer to the former.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.