Abstract

Observation angular distance error, as the difference between the actual observation angular distance and the reference angular distance, is an important parameter that affects the identification success rate, attitude measurement accuracy, and real-time performance of a terrestrial star tracker. It is the criterion to determine whether stars are identified in star identification but is still unclarified to date. To resolve the problem, the observation angular error model is presented in this work. This model determines the variation range of the observation angular distance error by analyzing the factors of astrometric transformations. Then, the optimal angular distance matching threshold expression for a terrestrial star tracker is presented on the basis of the proposed model for the optimal efficiency in star identification. Numerical simulations and a night sky experiment demonstrate that the differences between the theoretical model, simulation and actual experiment results are less than 0.5'' and thereby validate the reliability of our conclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.