Abstract

For inverse synthetic aperture radar (ISAR) imaging of low Earth orbit (LEO) space objects, examining the variations in the image plane of the object over the entire visible arc period allows more direct characterisation of the variations in the object imaging. In this study, the ideal turntable model was extended to determine the observation geometry of near-circular LEO objects. Two approximations were applied to the observation model to calculate the image plane’s normal and observation angles for near-circular orbit objects. One approximation treats the orbit of the space object as a standard arc relative to the Earth during the radar observation period, and the other omits the effect of the rotation of the Earth on the observations. First, the closed-form solution of the image plane normal in various attitude-stabilisation approaches was determined based on geometric models. The characteristics of the image plane and the observation angle of the near-circular orbit object were then analysed based on the common constraints of the radar line-of-sight (LOS). Subsequently, the variations in the image plane and the geometric constraints of the ISAR imaging were quantified. Based on the image plane’s normal, the rotational angular velocity of the radar LOS was estimated. The cross-range direction of the ISAR image was then calibrated. Three-dimensional imaging was then reconstructed based on dual station interferometry. Finally, simulations were performed to verify the result of the three-dimensional interferometric reconstruction and to calculate the reconstruction’s precision errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.