Abstract

AbstractLakes are an important part of the landscape on the Tibetan Plateau. Most of the Plateau lakes' area has been expanding in recent years, but lake‐atmosphere energy and water interaction is poorly understood because of a lack of observational data and adequate modeling systems. Based on the eddy covariance observation over a high‐altitude shallow and small lake (the small Nam Co Lake) during an ice‐free period from 10 April to 30 August 2012, this study analyzes the lake‐air heat and water vapor turbulent transfer processes and evaluates two popular lake‐air exchange models: a bulk aerodynamic transfer model (B model) and a multilayer model (M model). Our main results are as follows: (1) observations show that the bulk transfer coefficient (CE) and roughness length (zoq) for water are higher than those for heat (CH and z0h), especially under low wind speed; (2) both models underestimate turbulent fluxes due to inaccurate values of the Charnock coefficient (α) and the roughness Reynolds number (Rr) which are both important parameters for calculating the roughness length for momentum (z0m) over water; (3) α within a reasonable range of 0.013–0.035 for rough flow and Rr for smooth flow (Rr = 0.11) are 0.031 and 0.54, respectively, by our observation. The wave pattern of shorter wavelength gives a larger z0m in the small and shallow lake; and (4) the B model and the M model gave consistent results, and both models are more suitable for simulation of turbulent flux exchange after z0m optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.