Abstract
As constituents of one of the vital agricultural ecosystems, paddy fields exert significant influence on the global carbon cycle. Therefore, conducting observations and simulations of CO2 flux in rice paddy is of significant importance for gaining deeper insights into the functionality of agricultural ecosystems. This study utilized an eddy covariance system to observe and analyze the CO2 flux in a rice paddy field in Eastern China and also introduced and parameterized the Jarvis multiplicative model to predict the CO2 flux. Results indicate that throughout the observation period, the range of CO2 flux in the paddy field was −0.1 to −38.4 μmol/(m2·s), with a mean of −12.9 μmol/(m2·s). The highest CO2 flux occurred during the rice flowering period with peak photosynthetic activity and maximum CO2 absorption. Diurnal variation in CO2 flux exhibited a “U”-shaped curve, with flux reaching its peak absorption at 11:30. The CO2 flux was notably higher in the morning than in the afternoon. The nocturnal CO2 flux remained relatively stable, primarily originating from respiratory CO2 emissions. The rice canopy CO2 flux model was revised using boundary line analysis, elucidating that photosynthetically active radiation, temperature, vapor pressure deficit, phenological stage, time, and concentration are pivotal factors influencing CO2 flux. The simulation of CO2 flux using the parameterized model, compared with measured values, reveals the efficacy of the established parameter model in simulating rice CO2 flux. This study holds significant importance in comprehending the carbon cycling process within paddy ecosystems, furnishing scientific grounds for future climate change and environmental management endeavors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.