Abstract

AbstractParameterizations for bottom shear stress are required to predict sediment resuspension from field observations and within numerical models that do not resolve flow within the viscous sublayer. This study assessed three observation‐based bottom shear stress (τb) parameterizations, including (a) the sum of surface wave stress and mean current (quadratic) stress (); (b) the log‐law (τb = τL); and (c) the turbulent kinetic energy (τb = τTKE); using 2 years of observations from a large shallow lake. For this system, the parameterization τb = τw + τc was sufficient to qualitatively predict resuspension, since bottom currents and surface wave orbitals were the two major processes found to resuspend bottom sediments. However, the τL and τTKE parameterizations also captured the development of a nepheloid layer within the hypolimnion associated with high‐frequency internal waves. Reynolds‐averaged Navier‐Stokes (RANS) equation models parameterize τb as the summation of modeled current‐induced bottom stress (τc,m) and modeled surface wave‐induced bottom stress (τw,m). The performance of different parameterizations for τw,m and τc,m in RANS models was assessed against the observations. The optimal parameterizations yielded root‐mean‐square errors of 0.031 and 0.025 Pa, respectively, when τw,m, and τc,m were set using a constant canonical drag coefficient. A RANS‐based τL parameterization was developed; however, the grid‐averaged modeled dissipation did not always match local observations, leading to O(10) errors in prediction of bottom stress. Turbulence‐based parameterizations should be further developed for application to flows with mean shear‐free boundary turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.