Abstract

We suggest that strain in the elastic part of the Earth's crust induced by surface temperature variations is a significant contributor to the seasonal variations observed in the spatially filtered daily position time series of Southern California Integrated GPS Network (SCIGN) stations. We compute the predicted thermoelastic strain from the observed local atmospheric temperature record assuming an elastically decoupled layer over a uniform elastic half‐space and compare the seasonal variations in thermoelastic strain to the horizontal GPS position time series. We consider three regions (Palmdale, 29 Palms, and Idyllwild), each with one temperature station and three to six GPS stations. The temperature time series is used to compute thermoelastic strain at each station on the basis of its relative location in the temperature field. For each region we assume a wavelength for the temperature field that is related to the local topography. The depth of the decoupled layer is inferred from the phase delay between the temperature record and the GPS time series. The relative amplitude of strain variation at each GPS station, calculated to be on the order of 0.1 μstrain, is related to the relative location of that station in the temperature field. The goodness of fit between model and data is evaluated from the relative amplitudes of the seasonal signals, as well as the appropriateness of the chosen temperature field wavelength and decoupled layer depth. The analysis shows a good fit between the predicted strains and the GPS time series. This suggests that the model captures the key first‐order ingredients that determine the thermoelastic strain in a given area. The results can be used to improve the signal/noise ratio in GPS data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call