Abstract

Abstract The texture evolution in commercial-purity aluminum (AA1070) processed by accumulative roll-bonding (ARB) is investigated with the aid of X-ray diffraction and crystal plasticity modeling. The experimental results indicate strong texture gradients through the sheet thickness, from rolling-type textures with orthorhombic symmetry at the center to shear-type textures with monoclinic symmetry near the surface. The experimental textures are reproduced well by polycrystal plasticity modeling carried out with deformation histories from finite element simulations. The observations of a relatively strong {4 4 11}〈11 11 8〉 component at the center and a {0 0 1}〈1 1 0〉 component at the surface are attributed to their higher orientation stability than the other rolling- and shear-type orientations. Examination of the average through-thickness textures suggests that the ARB technique may not be an effective means to develop apparent {1 1 1}〈 u v w 〉 components and thus to enhance the normal anisotropy of plasticity of the bulk sheet materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.