Abstract

Solar wind charge exchange (SWCX) X-rays are emitted when highly charged solar wind ions such as O{sup 7{sup +}} collide with neutral gas, including the Earth's tenuous outer atmosphere (exosphere or geocorona) and hydrogen and helium from the local interstellar medium drifting through the heliosphere. This geocoronal and heliospheric emission comprises a significant and varying fraction of the soft X-ray background (SXRB) and is seen in every X-ray observation, with the intensity dependent on solar wind conditions and observation geometry. Under the right conditions, geocoronal emission can increase the apparent SXRB by roughly an order of magnitude for an hour or more. In this work, we study a dozen occasions when the near-Earth solar wind flux was exceptionally high. These gusts of wind lead to abrupt changes in SWCX X-ray emission around Earth, which may or may not be seen by X-ray observatories depending on their line of sight. Using detailed three-dimensional magnetohydrodynamical simulations of the solar wind's interaction with the Earth's magnetosphere, and element abundances and ionization states measured by ACE, we model the time-dependent brightness of major geocoronal SWCX emission lines during those gusts and compare with changes in the X-ray background measured by the Chandra X-ray Observatory.more » We find reasonably good agreement between model and observation, with measured geocoronal line brightnesses averaged over 1 hr of up to 136 photons s{sup –1} cm{sup –2} sr{sup –1} in the O VII Kα triplet around 564 eV.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call