Abstract

In a series of Magnetized Liner Inertial Fusion (MagLIF) experiments performed at the Z pulsed power accelerator of Sandia National Laboratories, beryllium liners filled with deuterium gas pressures in the 4-8 atm range and a tracer amount of krypton were imploded. At the collapse of the cylindrical implosion, temperatures in the 1-3keV range and atom number densities of ∼1023 cm-3 were expected. The plasma was magnetized with a 10T axial magnetic field. Krypton was added to the fuel for diagnosing implosion plasma conditions. Krypton K-shell line emission was recorded with the CRITR time-integrated transmission crystal x-ray spectrometer. The observation shows n = 2 to n = 1 line emissions in B-, Be-, Li-, and He-like Kr ions and is characteristic of the highest electron temperatures achieved in the thermonuclear plasma. Detailed modeling of the krypton atomic kinetics and radiation physics permits us to interpret the composite spectral feature, and it demonstrates that the spectrum is temperature sensitive. We discuss temperatures extracted from the krypton data analysis for experiments performed with several filling pressures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call