Abstract

A non-stationary approach to the reflection of weak plane shocks is suggested as an alternative to the usual pseudo-stationary transformation. For regular reflection the non-stationary model produces results which are identical to those obtained using the pseudo-stationary assumption, but with simpler algebra. For weak Mach reflections, where the predictions of the pseudo-stationary model are in disagreement with experimental results, the non-stationary model predicts accurately the observed shapes and positions of the reflected and Mach stem shocks and the spatially varying flow properties behind these shocks. However, the non-stationary model predicts that the gas flows above and below the contact surface, relative to the triple point, are not quite parallel. Parallel flows could be obtained only in the limiting case of grazing incidence, when the reflected shock was sonic. The model is based on the experimental results presented in Part 1 of this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.