Abstract

Einstein’s equations with two commuting Killing vectors and the associated Lax pair are considered. The equations for the connection A ( ς , η , γ )= Ψ , γ Ψ −1 , where γ the variable spectral parameter are considered. A transition matrix T = A ( ς , η , γ ) A −1 ( ξ , η , γ ) for A is defined relating A at ingoing and outgoing light cones. It is shown that it satisfies equations familiar from integrable PDE theory. A transition matrix on ς = constant is defined in an analogous manner. These transition matrices allow us to obtain a hierarchy of integrals of motion with respect to time, purely in terms of the trace of a function of the connections g , ς g −1 and g , η g −1 . Furthermore, a hierarchy of integrals of motion in terms of the curvature variable B = A , γ A −1 , involving the commutator [ A (1), A (−1)], is obtained. We interpret the inhomogeneous wave equation that governs σ = lnN , N the lapse, as a Klein–Gordon equation, a dispersion relation relating energy and momentum density, based on the first connection observable and hence this first observable corresponds to mass. The corresponding quantum operators are ∂/∂ t , ∂/∂ z and this means that the full Poincare group is at our disposal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call