Abstract

Utilizing a recently found class of exact, analytic rotating solutions of non-relativistic fireball hydrodynamics, we calculate analytically the single-particle spectra, the elliptic flows and two-particle Bose-Einstein correlation functions for rotating and expanding fireballs with spheroidal symmetry. We demonstrate, that rotation generates final state momentum anisotropies even for a spatially symmetric, spherical initial geometry of the fireball. The mass dependence of the effective temperatures, as well as the HBT radius parameters and the elliptic flow are shown to be sensitive not only to radial flow effects but also to the magnitude of the initial angular momentum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.