Abstract

Phasor Measurement Units (PMUs) are measuring devices that, when placed in electrical networks, observe their state by providing information on the currents in their branches (transmission lines) and voltages in their buses. Compared to other devices, PMUs have the capability of observing other nodes besides the ones they are placed on. Due to a set of observability rules, depending on the placement decisions, the same number of PMUs can monitor a higher or smaller percentage of a network. This leads to the optimization problem hereby addressed, the PMU Placement Problem (PPP) which aims at determining the minimum number and location of PMUs that guarantee full observability of a network at minimum cost.In this paper we propose two general mathematical programming models for the PPP: a single-level and a bilevel integer programming model. To strengthen both formulations, we derive new valid inequalities and promote variable fixing. Furthermore, to tackle the bilevel model, we devise a cutting plane algorithm amended with particular features that improve its efficiency. The efficiency of the algorithm is validated through computational experiments. Results show that this new approach is more efficient than state-of-the-art proposals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call