Abstract

The problem of navigation for the distributed satellites system using relative range measurements is investigated. Firstly, observability for every participating satellites is analyzed based on the nonlinear Keplerian model containing J2 perturbation and the nonlinear measurements. It is proven that the minimum number of tracking satellites to assure the observability of the distributed satellites system is three. Additionally, the analysis shows that the J2 perturbation and the nonlinearity make little contribution to improve the observability for the navigation. Then, a quasi-consistent extended Kalman filter based navigation algorithm is proposed, which is quasi-consistent and can provide an online evaluation of the navigation precision. The simulation illustrates the feasibility and effectiveness of the proposed navigation algorithm for the distributed satellites system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.