Abstract

점 클라우드로부터 차량을 추출하는 다양한 방식 중 OBPCA 방식은 세그먼트 단위의 평가-분류로 정확도가 높고, 단순한 직사각형 평면도에서 특성 값들을 추출하므로 분류가 빠르다. 그러나 이 OBPCA 방식은 차량과 크기가 비슷한 직육면체 모양의 물체를 차량과 구별하지 못하는 문제를 가지므로 이를 극복하고 차량 추출의 정확도를 높이는 방안에 대한 연구가 필요하다. 본 논문에서는 이 문제를 해결하기 위해 수평 단면과 함께 수직 단면을 이용하는 확장 OBPCA 방식을 제안한다. 제안 방법은 수평 단면을 통해 차량 후보를 1차로 선별하고, 각 차량 후보에서 가장 특징적인 수직 단면을 찾아서 그 단면의 특성 값들을 임계값들과 비교하여 차량 여부를 판단한다. 비교실험에서는 본 제안방식이 기존 OBPCA 방식에 비해 정밀도가 6.61% 향상되고 위양성률이 13.96% 감소됨을 확인했으며, 이를 통해 제안 방식이 기존 OBPCA 분류오류 문제에 대해 효과적인 해결방안임을 보였다. Among various vehicle extraction techniques, OBPCA (Object-Based Point Cloud Analysis) calculates features quickly by coarse-grained rectangles from top-view of the vehicle candidates. However, it uses only a top-view rectangle to detect a vehicle. Thus, it is hard to extract rectangular objects with similar size. For this reason, accuracy issue has raised on the OBPCA method which influences on DEM generation and traffic monitoring tasks. In this paper, we propose a novel method which uses the most distinguishing vertical elevations to calculate additional features. Our proposed method uses same features with top-view, determines new thresholds, and decides whether the candidate is vehicle or not. We compared the accuracy and execution time between original OBPCA and the proposed one. The experiment result shows that our method produces 6.61% increase of precision and 13.96% decrease of false positive rate despite with marginal increase of execution time. We can see that the proposed method can reduce misclassification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.