Abstract

As new network applications have arisen rapidly in recent years, it is becoming more difficult to predict the exact traffic pattern of a network. In consequence, a routing scheme based on a single traffic demand matrix often leads to a poor performance. Oblivious routing (Racke in Proceedings of the 43rd annual IEEE symposium on foundations of computer science 43---52, 2002) is a technique for tackling the traffic demand uncertainty problem. A routing scheme derived from this principle intends to achieve a predicable performance for a set of traffic matrixes. Oblivious routing can certainly be an effective tool to handle traffic demand uncertainty in a wireless mesh network (WMN). However, a WMN has an additional tool that a wireline network does not have: dynamic bandwidth allocation. A router in a WMN can dynamically assign bandwidth to its attached links. This capability has never been exploited previously in works on oblivious routing for a spatial time division multiple access (STDMA) based WMN. Another useful insight is that although it is impossible to know the exact traffic matrix, it is relatively easy to estimate the amount of the traffic routed through a link when the routing scheme is given. Based on these two insights, we propose a new oblivious routing framework for STDMA WMNs. Both analytical models and simulation results are presented in this paper to prove that the performance--in terms of throughput, queue lengths, and fairness--of the proposed scheme can achieve significant gains over conventional oblivious routing schemes for STDMA based WMNs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call