Abstract

We consider systems in which the transmitter conveys messages to the receiver through a capacity-limited relay station. The channel between the transmitter and the relay station is assumed to be a frequency-selective additive Gaussian noise channel. It is assumed that the transmitter can shape the spectrum and adapt the coding technique so as to optimize performance. The relay operation is oblivious (nomadic transmitters), that is, the specific codebooks used are unknown. We find the reliable information rate that can be achieved with Gaussian signaling in this setting, and to that end, employ Gaussian bottleneck results combined with Shannon’s incremental frequency approach. We also prove that, unlike classical water pouring, the allocated spectrum (power and bit rate) of the optimal solution could frequently be discontinuous. These results can be applied also to a MIMO transmission scheme. We also investigate the case of an entropy-limited relay. We show that the optimal relay function is always deterministic, present lower and upper bounds on the optimal performance (in terms of mutual information), and derive an analytical approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.