Abstract

The quality of seismic images obtained by reverse time migration (RTM) strongly depends on the imaging condition. We propose a new imaging condition that is motivated by stationary phase analysis of the classical crosscorrelation imaging condition. Its implementation requires the Poynting vector of the source and receiver wavefields at the imaging point. An obliquity correction is added to compensate for the reflector dip effect on amplitudes of RTM. Numerical experiments show that using an imaging condition with obliquity compensation improves reverse time migration by reducing backscattering artifacts and improving illumination compensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.