Abstract

ABSTRACT The next generation of exoplanet space photometry missions proposed by both NASA and ESA promise to discover small transiting planets around the nearest and brightest main-sequence stars. The physical and rotational properties of these stars, in conjunction with Gaia-precision distances, can be used to determine the inclination of the stellar rotation axis. Given edge-on orbital paths for transiting planets, stellar inclinations can be interpreted as obliquities projected into the line of sight, which can be used to more clearly reveal the system architectures of small planets and the factors that drive their orbital evolution. To demonstrate the method, we use a sample of simulated target stars for the NASA Transiting Exoplanet Survey Satellite (TESS) mission. Based on predicted characteristics of these stars and likely measurement uncertainties, we show that the expected TESS discoveries will allow us to finely differentiate the true underlying obliquity distribution. Under conservative assumptions in our illustrative example—in which the true distribution is assumed to contain systems drawn from both well-aligned and isotropic distributions (e.g., due to multiple migration channels)—the correct fractions can be determined to within 0.15, thus enabling constraints on the evolutionary processes that shape system architectures. Moreover, because of the excellent astrometric precision expected from Gaia, this technique will also be applicable to the large number of planets already discovered by Kepler orbiting much more distant stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.