Abstract

The problem of oblique incidence of plane waves and Gaussian beams on finite-aperture gratings (the number of grooves and their length and depth are all finite) in slab waveguides is analyzed by means of a four-wave two-dimensional coupled-mode theory (2D-CMT). This model considers the finite aperture of the gratings and the correct simultaneous interaction among all four relevant waves (TE+,TE-,TM+, and TM-) by means of Bragg diffraction at oblique incidence. The grating’s geometry and boundary conditions are properly accounted for, and the problem is solved numerically by a finite-difference method. Near-field and far-field distributions, as well as reflection and transmission (power) coefficients (as functions of the plane-wave incidence angle), are calculated. The model is compared with the degenerate case of two-wave coupling that considers interaction only between pairs (e.g., TE+↔TE-), and significant differences may be observed. Compatibility and differences between the 2D-CMT and the one-dimensional CMT (grooves with infinite length) are also presented, in addition to the influence of the beam width and the groove length on the emerging waves. The analysis is general and can be performed on many kinds of realistic beams, grating shapes, and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.