Abstract

Steady self-similar solutions to the supersonic flow of Bethe–Zel’dovich–Thompson fluids past compressive and rarefactive ramps are derived. Inviscid, non-heat-conducting, non-reacting and single-phase vapour flow is assumed. For convex isentropes and shock adiabats in the pressure–specific volume plane (classical gas dynamic regime), the well-known oblique shock and centred Prandtl–Meyer fan occur at a compressive and rarefactive ramp, respectively. For non-convex isentropes and shock adiabats (non-classical gas dynamic regime), four additional wave configurations may possibly occur; these are composite waves in which a Prandtl–Meyer fan is adjacent up to two oblique shock waves. The steady two-dimensional counterparts of the wave curves defined for the one-dimensional Riemann problem are constructed. In the present context, such curves consist of all the possible states connected to a given initial state (namely, the uniform state upstream of the ramp/wedge) by means of a steady self-similar solution. In addition to the classical case, as many as six non-classical wave-curve configurations are singled out. Moreover, the necessary conditions leading to each type of wave curves are analysed and a map of the upstream states leading to each configuration is determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.