Abstract
This paper aims at studying the oblique reflection of solitons in an inhomogeneous plasma having finite-temperature ions and trapped electrons (two-temperature nonisothermal electrons). In order to study the soliton reflection, a coupled equation is derived based on modified Korteweg-deVries equations for the incident and reflected solitons, and then, it is solved along with the use of incident soliton solution. The expressions for the reflected soliton amplitude, width, and reflection coefficient are obtained and examined for different parameter regimes. The reflection coefficient, which is the ratio of reflected and incident soliton amplitudes, is found to be independent of the ion and electron temperatures. It infers that both the amplitudes change in the same proportion with the ion and electron temperatures. It is observed that the soliton reflects with higher amplitude when the obliqueness is smaller. It is also seen that the reflected soliton undergoes a downshift in its original line of propagation. This downshift is further investigated in detail. The effect of the trapped electrons on the soliton reflection characteristics and on the downshift is also analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.