Abstract

Collision of plane fronts of a plane-polarized Alfven discontinuity and a slow shock wave propagating in opposite directions at a certain angle is considered within the framework of an ideal magnetohydrodynamic model. The initial state of an infinitely conducting medium at rest with a frozen-in magnetic field is assumed to be given. Calculations are carried out for various values of the shock wave Mach number and the magnetic field strength using a special software which makes it possible to find an exact solution of the Riemann problem of breakdown of a discontinuity between the states downstream of the interacting waves by means of a computer. The wave flow structure is investigated and a bifurcation map of flow restructuring is constructed. Domains of the initial parameters for which the interaction differs qualitatively are distinguished. The parameters of the medium and magnetic field are found as functions of the angle between the colliding discontinuities and the inclination of the magnetic field. The results obtained may be used in investigations of magnetic reconnection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call