Abstract

The oblique circular torus (OCT) and its main geometric properties are introduced. Intrinsic vector calculation is utilized to mathematically describe the OCT. The coordinate-free approach leads to the algebraic equation of an OCT in a privileged Cartesian reference frame. The OCT equation is used to confirm a theorem of Euclidean geometry. In a broad category of OCT, through any point five circles can be drawn on the surface, namely the parallel of latitude and four circular generatrices whose planes pass through the OCT center of symmetry. In the special case of a right circular torus, the Villarceau theorem is verified. Next, consider the four RRS open chains whose S spherical-joint centers move on the same OCT and their possible in-parallel assemblies in single-loop RRRS chains. From a category of the foregoing RRRS chains, a new derivation of the amazing Bennett 4R linkage is proposed. Two kinds of Bennett linkages are further verified and each kind contains two enantiomorphic or symmetric linkages. Four types of Bennett linkages associated with one OCT are established by uniquely specifying the link twist as an acute value. Two cases of special type, rectangular and equilateral configurations, are also confirmed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.