Abstract

Small mammals undergo thermoregulatory adjustments in response to changing environmental conditions. Whereas small heterothermic mammals can employ torpor to save energy in the cold, homeothermic species must increase heat production to defend normothermia through the recruitment of brown adipose tissue (BAT). Here, we studied thermoregulatory adaptation in an obligate homeotherm, the African striped mouse (Rhabdomys pumilio), captured from a subpopulation living in a mesic, temperate climate with marked seasonal differences. Basal metabolic rate (BMR), non-shivering thermogenesis (NST) and summit metabolic rate (Msum) increased from summer to winter, with NST and Msum already reaching maximal rates in autumn, suggesting seasonal preparation for the cold. Typical of rodents, cold-induced metabolic rates were positively correlated with BAT mass. Analysis of cytochrome c oxidase (COX) activity and UCP1 content, however, demonstrated that thermogenic capacity declined with BAT mass. This resulted in seasonal differences in NST being driven by changes in BMR. The increase in BMR was supported by a comprehensive anatomical analysis of metabolically active organs, revealing increased mass proportions in the cold season. The thermoregulatory response of R. pumilio was associated with the maintenance of body mass throughout the year (48.3±1.4 g), contrasting large summer-winter mass reductions often observed in Holarctic rodents. Collectively, bioenergetic adaptation of this Afrotropical rodent involves seasonal organ adjustments influencing BMR, combined with a constant thermogenic capacity dictated by trade-offs in the thermogenic properties of BAT. Arguably, this high degree of plasticity was a response to unpredictable cold spells throughout the year. Consequently, the reliance on such a resource-intensive thermoregulatory strategy may expose more energetic vulnerability in changing environments of food scarcity and extreme weather conditions due to climate change, with major ramifications for survival of the species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call