Abstract

Sandwich covariance matrix estimators are a popular tool in applied regression modeling for performing inference that is robust to certain types of model misspecification. Suitable implementations are available in the R system for statistical computing for certain model fitting functions only (in particular <code>lm()</code>), but not for other standard regression functions, such as <code>glm()</code>, <code>nls()</code>, or <code>survreg()</code>. Therefore, conceptual tools and their translation to computational tools in the package sandwich are discussed, enabling the computation of sandwich estimators in general parametric models. Object orientation can be achieved by providing a few extractor functions' most importantly for the empirical estimating functions' from which various types of sandwich estimators can be computed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.