Abstract
Gravity resistance is a principal graviresponse in plants. In resistance to hypergravity, the gravity signal may be perceived by the mechanoreceptors located on the plasma membrane, and then transformed and transduced via the structural continuum or physiological continuity of cortical microtubules-plasma membrane-cell wall, leading to an increase in the cell wall rigidity as the final response. The Resist Tubule experiment, which will be conducted in the Kibo Module on the International Space Station, aims to confirm that this hypothesis is applicable to resistance to 1 G gravity. There are two major objectives in the Resist Tubule experiment. One is to quantify the contributions of cortical microtubules to gravity resistance using Arabidopsis tubulin mutants with different degrees of defects. Another objective is to analyze the modifications to dynamics of cortical microtubules and membrane rafts under microgravity conditions on-site by observing green fluorescent protein (GFP)-expressing Arabidopsis lines with the fluorescence microscope in the Kibo. We have selected suitable mutants, developed necessary hardware, and fixed operation procedure for the experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.