Abstract

Poor sleep patterns in older adults are associated with chromosomal telomere shortening, a marker of cellular senescence. However, studies have relied on self-reported sleep characteristics, with few data for younger individuals. We investigated whether sleep measured via actigraphy was cross-sectionally associated with telomere length in children and midlife adults. A population-based sample of 1874 11-12 year olds and midlife adults (mean age 44 years, SD 5.1) had biological and physical assessments at centers across Australia in 2015-2016. Sleep characteristics, including duration, onset, offset, day-to-day variability, and efficiency, were derived from actigraphy. Relative telomere length (T/S ratio) was measured by quantitative polymerase chain reaction on genomic DNA from peripheral blood. Multivariable regression models estimated associations, adjusting for prespecified confounders. Both sleep and telomere data were available for 728 children and 1070 adults. Mean (SD) T/S ratio was 1.09 (0.55) in children and 0.81 (0.38) in adults. T/S ratio was not predicted by sleep duration (β 0.04, 95% confidence interval [CI] -0.02 to 0.09, p = .16, children; β -0.004, 95% CI -0.03 to 0.02, p = .70, adults) or most other sleep metrics. The only exception was a weak association between later sleep timing (the midpoint of sleep onset and offset) and longer telomeres in adults (β 0.03, 95% CI 0.01 to 0.06, p = .01). Objective sleep characteristics show no convincing associations with telomere length in two largely healthy populations up to at least midlife. Sleep-telomere associations may be a late-life occurrence or may present only with a trigger such as presence of other morbidities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call