Abstract
Abstract Convolutional neural networks (CNNs) are a key technology powering the automated technologies of seeing known as computer vision. CNNs have been especially successful in systems that perform object recognition from visual data. This article examines the persistence of a mid-twentieth-century ontology of the digital image in these contemporary technologies. While CNNs are multidimensional, their ontology flattens distinctions between background and foreground, between subjects and objects, and even the relations established among the categories of information used to organize and train these models. This ontology enables the introduction and amplification of bias and troubling correlations and the transfer or slippage of learned associations between humans and objects found in the training image archives. Inspecting and interpreting what CNNs learn and index through their complex architectures can be difficult if not impossible because of how they encode and obfuscate quite human ways of seeing the world and the image repertoires used to train these algorithms that are rife with residues of prior representations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.