Abstract

IntroductionHip injuries are becoming a more common problem as the elderly population increases and their management represents a significant proportion of health care costs. Diagnosis of a fracture based on clinical assessment and plain films is not always conclusive and further investigations for such occult fractures, such as magnetic resonance imaging (MRI), are sometimes required which are expensive and may be difficult to access. Disruption to the conduction of a sound wave travelling through a fractured bone is a concept that has been used to diagnose fractures. Patients and methodsIn our study we used a tuning fork with frequency of 128Hz to objectively measure the reduction in sound amplitude in fractured and non-fractured hips. We looked at the feasibility of using this test as a diagnostic tool for neck of femur fractures. ResultsA total of 20 patients was included in the study, using MRI scan as the standard for comparison of diagnostic findings. Informed consent was obtained from the patients. There was a significant difference in the amplitude reduction of the sound waves when comparing normal to fractured hips. This was 0.9 in normal hips, compared to 0.31 and 0.18 in intra-capsular and extra-capsular fractures, respectively. Our test was 80% accurate at diagnosing neck of femur fractures. ConclusionIn conclusion this test may be used as a diagnostic test or screening tool in the assessment of occult hip fractures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.