Abstract

BackgroundCurrent clinical assessments of essential tremor (ET) are primarily based on expert consultation combined with reviewing patient complaints, physician expertise, and diagnostic experience. Thus, traditional evaluation methods often lead to biased diagnostic results. There is a clinical demand for a method that can objectively quantify the severity of the patient's disease. MethodsThis study aims to develop an artificial intelligence-aided diagnosis method based on multi-sensory fusion wearables. The experiment relies on a rigorous clinical trial paradigm to collect multi-modal fusion of signals from 98 ET patients. At the same time, three clinicians scored independently, and the consensus score obtained was used as the ground truth for the machine learning models. ResultsSixty kinematic parameters were extracted from the signals recorded by the nine-axis inertial measurement unit (IMU). The results showed that most of the features obtained by IMU could effectively characterize the severity of the tremors. The accuracy of the optimal model for three tasks classifying five severity levels was 97.71%, 97.54%, and 97.72%, respectively. ConclusionsThis paper reports the first attempt to combine multiple feature selection and machine learning algorithms for fine-grained automatic quantification of postural tremor in ET patients. The promising results showed the potential of the proposed approach to quantify the severity of ET objectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.