Abstract

In this paper, a set of important objective priors are examined for the Bayesian estimation of the parameters present in the Poisson-Exponential distribution PE. We derived the multivariate Jeffreys prior and the Maximal Data Information Prior. Reference prior and others priors proposed in the literature are also analyzed. We show that the posterior densities resulting from these approaches are proper although the respective priors are improper. Monte Carlo simulations are used to compare the efficiencies and to assess the sensitivity of the choice of the priors, mainly for small sample sizes. This simulation study shows that the mean square error, mean bias and coverage probability of credible intervals under Gamma, Jeffreys' rule and Box & Tiao priors presented equal results, whereas Jeffreys and Reference priors showed the best results. The MDIP prior had a worse performance in all analyzed situations showing not to be indicated for Bayesian analysis of the PE distribution. A real data set is analyzed for illustrative purpose of the Bayesian approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.