Abstract

BackgroundIntrafascicular electrical stimulation has been extensively adopted to achieve sensory feedback for limb amputees. Axon-like carbon nanotube yarn (CNTy) electrodes with both promising flexibility and spatial selectivity index (SSI) can be fascinating alternatives to generate artificial somatosensation. New methodHere we systematically disclose objective neuromodulation basis for artificial somatosensation through intrafascicular CNTy electrodes. CNTy electrodes with different exposed lengths were utilized for electrically stimulating tibial nerves in twelve rats. Somatosensory evoked potentials (SEPs) were recorded synchronously using an epidural thirty-channel electrode array. Spatiotemporal characteristics of SEPs were analyzed as current pulse amplitude (PA), pulse width (PW) and pulse frequency (PF) varied. ResultsThe current thresholds at 1 Hz exhibit the lowest means when compared with those at 4 and 8 Hz for most CNTy electrodes (20/28). For all the electrodes, amplitudes of SEPs and activated areas of perceptive fields increase with PWs and PAs rising, and decrease remarkably with PFs from 1 to 8 Hz. Latencies of P1 and N1 of SEP peaks gradually reduced with PWs and PAs advancing. Considering high SSIs, relatively stable current thresholds, wider variation ranges of sensory magnitudes and optimal stability of perceptive fields, the L-200 µm electrodes are preferable for neuromodulation with PFs of 1 – 8 Hz, PWs of 100 – 800 μs and PAs of 2 – 64 μA. Comparison with existing methodsNew-type CNTy electrodes possess both promising flexibility and SSI when compared with other neural interfaces. We systematically explore objective neuromodulation basis for artificial somatosensation through CNTy electrodes for the first time. ConclusionsSignificantly higher SSIs, lower current and charge thresholds exist for CNTy electrodes in comparison with other peripheral-nerve interfaces. This study can, for the first time, lay a solid neuromodulation foundation for CNTy electrodes to achieve fine sensory feedback.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call