Abstract
AbstractClustering is typically applied for data exploration when there are no or very few labeled data available. The goal is to find groups or clusters of like data. The clusters will be of interest to the person applying the algorithm. An objective function‐based clustering algorithm tries to minimize (or maximize) a function such that the clusters that are obtained when the minimum/maximum is reached are homogeneous. One needs to choose a good set of features and the appropriate number of clusters to generate a good partition of the data into maximally homogeneous groups. Objective functions for clustering are introduced. Clustering algorithms generated from the given objective functions are shown, with a number of examples of widely used approaches discussed. © 2012 Wiley Periodicals, Inc.This article is categorized under: Algorithmic Development > Scalable Statistical Methods Algorithmic Development > Structure Discovery Technologies > Machine Learning Technologies > Structure Discovery and Clustering
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.