Abstract

BackgroundWearables have been gaining increasing momentum and have enormous potential to provide insights into daily life behaviors and longitudinal health monitoring. However, to date, there is still a lack of principled algorithmic framework to facilitate the analysis of actigraphy and objectively characterize day-by-day data patterns, particularly in cohorts with sleep problems.ObjectiveThis study aimed to propose a principled algorithmic framework for the assessment of activity, sleep, and circadian rhythm patterns in people with posttraumatic stress disorder (PTSD), a mental disorder with long-lasting distressing symptoms such as intrusive memories, avoidance behaviors, and sleep disturbance. In clinical practice, these symptoms are typically assessed using retrospective self-reports that are prone to recall bias. The aim of this study was to develop objective measures from patients’ everyday lives, which could potentially considerably enhance the understanding of symptoms, behaviors, and treatment effects.MethodsUsing a wrist-worn sensor, we recorded actigraphy, light, and temperature data over 7 consecutive days from three groups: 42 people diagnosed with PTSD, 43 traumatized controls, and 30 nontraumatized controls. The participants also completed a daily sleep diary over 7 days and the standardized Pittsburgh Sleep Quality Index questionnaire. We developed a novel approach to automatically determine sleep onset and offset, which can also capture awakenings that are crucial for assessing sleep quality. Moreover, we introduced a new intuitive methodology facilitating actigraphy exploration and characterize day-by-day data across 49 activity, sleep, and circadian rhythm patterns.ResultsWe demonstrate that the new sleep detection algorithm closely matches the sleep onset and offset against the participants' sleep diaries consistently outperforming an existing open-access widely used approach. Participants with PTSD exhibited considerably more fragmented sleep patterns (as indicated by greater nocturnal activity, including awakenings) and greater intraday variability compared with traumatized and nontraumatized control groups, showing statistically significant (P<.05) and strong associations (|R|>0.3).ConclusionsThis study lays the foundation for objective assessment of activity, sleep, and circadian rhythm patterns using passively collected data from a wrist-worn sensor, facilitating large community studies to monitor longitudinally healthy and pathological cohorts under free-living conditions. These findings may be useful in clinical PTSD assessment and could inform therapy and monitoring of treatment effects.

Highlights

  • BackgroundPosttraumatic stress disorder (PTSD) is a mental disorder with lifetime prevalence ranging from 1.9% [1] to 8.8% [2]

  • This study lays the foundation for objective assessment of activity, sleep, and circadian rhythm patterns using passively collected data from a wrist-worn sensor, facilitating large community studies to monitor longitudinally healthy and pathological cohorts under free-living conditions

  • The proposed sleep detection approach requires the availability of ambient light data, but we have found that including this additional modality overcomes problems with sedentary activity which might otherwise be mislabeled as sleep

Read more

Summary

Introduction

BackgroundPosttraumatic stress disorder (PTSD) is a mental disorder with lifetime prevalence ranging from 1.9% [1] to 8.8% [2]. PTSD may develop following exposure to a traumatic event, which is defined as exposure to actual or threatened death, serious injury, or sexual violence in the Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-5) [5] It is characterized by four symptom categories: (1) re-experiencing symptoms associated with the trauma, which include intrusive memories of the event, (2) avoidance of stimuli associated with the trauma, (3) negative alterations in cognition and mood, and (4) alterations in arousal. From the perspective of this study, the monitoring environment for symptom assessment is critical: PTSD patients report sleeping better in lab settings than at home [13], where problems are more commonly detected [14,15] This emphasizes the importance of conducting community studies under free-living conditions instead of lab-based assessments. To date, there is still a lack of principled algorithmic framework to facilitate the analysis of actigraphy and objectively characterize day-by-day data patterns, in cohorts with sleep problems

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call