Abstract

Abstract In this research, rotated principal component analysis was applied to the atmospheric fields associated with a large sample of heavy-rain-producing mesoscale convective systems (MCSs). Cluster analysis in the subspace defined by the leading two resulting principal components revealed two subtypes with distinct synoptic and mesoscale characteristics, which are referred to as warm-season-type and synoptic-type events, respectively. Subsequent composite analysis showed that both subtypes typically occurred on the cool side of a quasi-stationary, low-level frontal boundary, within a region of locally maximized low-level convergence and warm advection. Synoptic-type events, which tended to exhibit greater horizontal extent than warm-season-type events, typically occurred downstream of a progressive upper-level trough, along a low-level potential temperature gradient with the warmest air to the south and southeast. Warm-season-type events, on the other hand, occurred within the right-entrance region of a minimally to anticyclonically curved upper-level jet streak, along a low-level potential temperature gradient with the warmest low-level air to the southwest. Synoptic-scale forcing for ascent was stronger in synoptic-type events, while low-level moisture was greater in warm-season-type events. Warm-season-type events were frequently preceded by the passage of a trailing-stratiform- (TS) type MCS, whereas synoptic-type events often occurred prior to the passage of a TS-type system. Analysis of the composite vertical wind profiles at the event location suggests that quasi-stationary behavior in warm-season events predominantly resulted from upstream propagation that nearly canceled advection by the mean steering flow, whereas in the case of synoptic-type events training predominantly resulted from system motion that paralleled a front.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call