Abstract

In this work, the problem of transformation and simultaneous variable selection is thoroughly treated via objective Bayesian approaches by the use of default Bayes factor variants. Four uniparametric families of transformations (Box–Cox, Modulus, Yeo-Johnson and Dual), denoted by T, are evaluated and compared. The subjective prior elicitation for the transformation parameter \(\lambda _T\), for each T, is not a straightforward task. Additionally, little prior information for \(\lambda _T\) is expected to be available, and therefore, an objective method is required. The intrinsic Bayes factors and the fractional Bayes factors allow us to incorporate default improper priors for \(\lambda _T\). We study the behaviour of each approach using a simulated reference example as well as two real-life examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.