Abstract
A higher-order approximation to the marginal posterior distribution for a scalar parameter of interest in the presence of nuisance parameters is proposed. The approximation is obtained using a matching prior. The procedure improves the normal first-order approximation and has several advantages. It does not require the elicitation on the nuisance parameters, neither numerical integration nor Monte Carlo simulation, and it enables us to perform accurate Bayesian inference even for small sample sizes. Numerical illustrations are given for models of practical interest, such as linear non-normal models and logistic regression. Finally, it is shown how the proposed approximation can routinely be applied in practice using results from likelihood asymptotics and the R package bundle hoa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.