Abstract
The inverse Gaussian process is an attractive stochastic process to model monotone degradation paths in degradation analysis. In this paper, we propose an objective Bayesian method to analyze the accelerated degradation model based on the inverse Gaussian process. Noninformative priors including the Jeffreys prior and reference priors are derived, and the propriety of the posteriors under each prior is validated. A simulation study is carried out to investigate the performance of the approach compared with the maximum likelihood method and the Bootstrap method. Numerical results show that the proposed method has better performance in terms of the mean squared error and the frequentist coverage probability. The reference prior πR2 is recommended to use in practice. Finally, the Bayesian approach is applied to a real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.